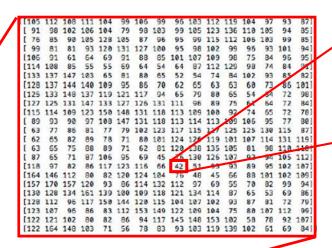
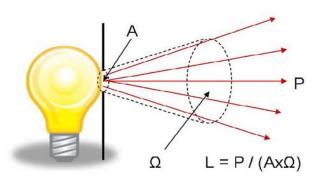
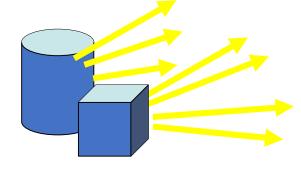

2. Radiometric Calibration & HDR



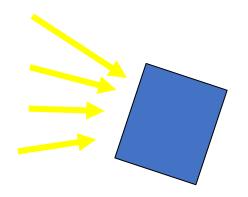

The Physical Meaning of Pixel Values


42



Preliminary Terms

Radiance



Light emitting (or reflecting) from a surface.

Only a light source would emit light, most things reflect light.

Radiance is measure in watts per steradian per square meter

• Irradiance

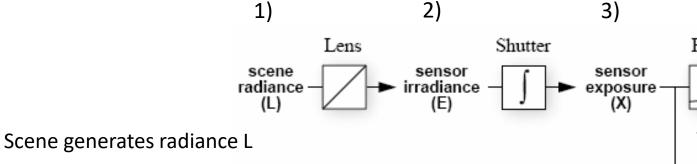
Amount of light falling onto a surface.

Irradiance is measured as watts per square meter

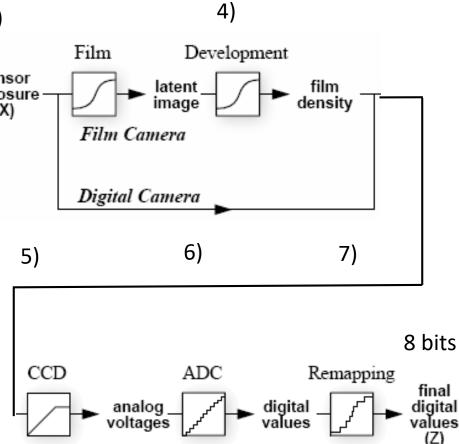
Note, that radiance and irradiance are fundamentally different.

Scene Radiance

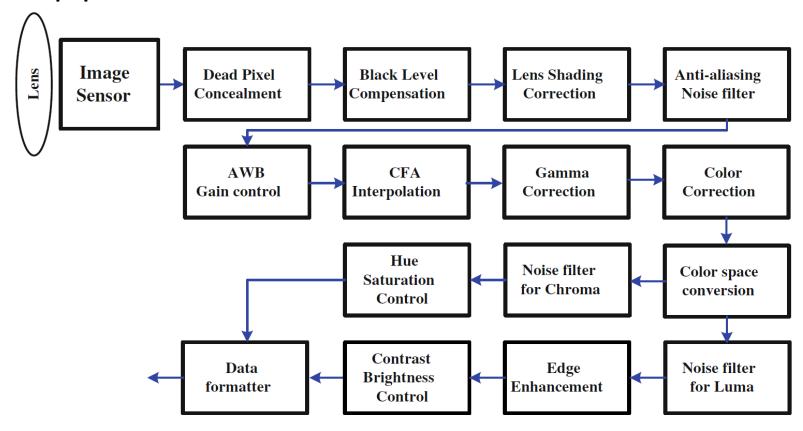
Amount of radiance in a 3D scene varies greatly



Each point is a different radiance reading

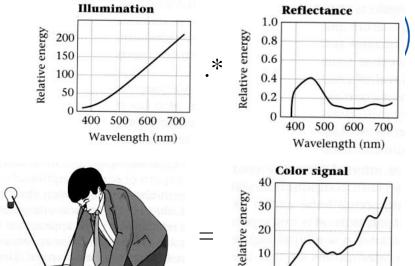

From Radiance to Pixel Values

Many steps from the scene to the final pixel value 'z'.


- 2. This can be attenuated through a lens, then hits the imaging devices sensor (now we call it irradiance, E)
- 3. E is exposed for Δt seconds. The product (E Δt) is the exposure
- 4. Film has a response curve to $E \bullet \Delta t$. This response is often not linear; The development process may also not be linear.
- 5. If we are using a digital camera, the CCD response is linear!
- 6. However, this response is quantized
- 7. And typically (almost always) "6" is remapped through a noncurve to behave like film, so even though the CCD is linear, we get back a non-linear response!

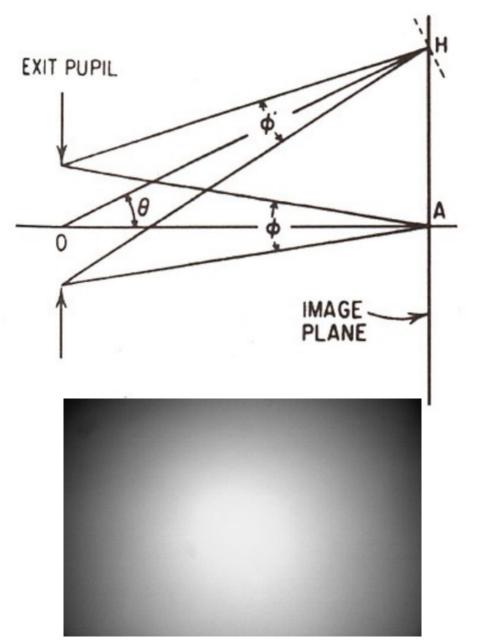
many steps in the re-mapping

- This is called the Image Signal Processor (ISP) in a camera
- A typical pipeline:


Theory and Applications of Smart Cameras, Kyung C-M, Springer 2016

sample: auto white balance

- The light source affects the color of the scene objects
- Human eyes can correct this color bias
- Auto-white-balance
 - Identify the illuminant color
 - Neutralize the color of the illuminant (often by scaling the R, G, B values respectively)


00 500 600 700 Wavelength (nm)

$$\begin{bmatrix} R' \\ G' \\ B' \end{bmatrix} = \begin{bmatrix} s_r \\ s_g \\ s_b \end{bmatrix} \begin{bmatrix} R \\ G \\ B \end{bmatrix}$$

(source: www.cambridgeincolour.com)

sample: vignetting

- Irradiance is proportional to
 - projected area of aperture as seen from pixel
 - projected area of pixel as seen from aperture
 - distance² from aperture to pixel
- Combining all these
 - each ~ a factor of cos θ
 - light drops as $\cos^4\theta$
- Calibrating
 - take a photo of a uniformly white object
 - the picture shows the attenuation, divide the pixel values by it

sample: noise reduction

- Most image details occur repeatedly
- Image self-similarity can be used to eliminate noise

- Each color indicates a group of squares which are almost indistinguishable
- Average the squares of the same color to denoise

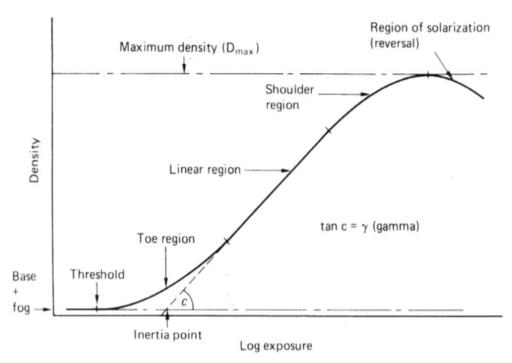
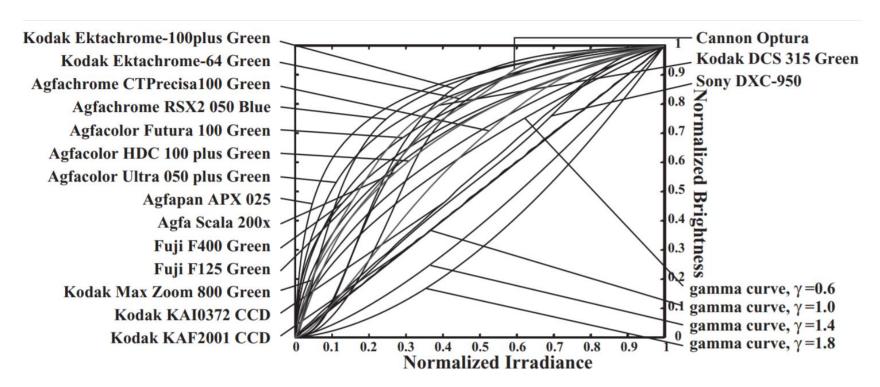


Image and movie denoising by nonlocal means, Buades, Coll, Morel, IJCV 2006

From Radiance to Pixel Values

- Film response curve
 - Toe region: the chemical process is just starting
 - Middle: mostly linear, if some amount of light turned half of the crystals to silver, the same amount more turns half of the rest
 - Shoulder region: close to saturation



The 'geography' of the characteristic curve of a negative material

From Radiance to Pixel Values

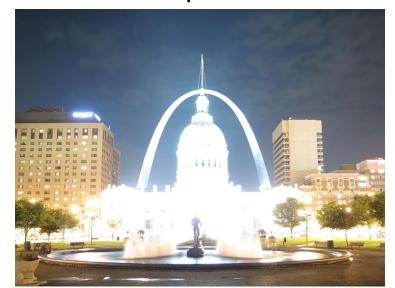
- Digital camera response curve
 - Modern cameras might have scene dependent processing, or even spatially variant processing
 - Making the curve impossible to calibrate or inverse! (let's ignore it for today)

Questions?

Radiometric Calibration

- Cameras have non-linear responses in terms of exposure $(E \bullet \Delta t)$
- Radiometric calibration amounts to recover the response function as:

$$Z_{ij} = f(E_i \bullet \Delta t_j)$$


Here Z_{ij} is the final pixel value (from 0-255) at pixel i, E_i is the irradiance at i, Δt_j is the shutter speed

Thus: $E_i \cdot \Delta t_j$ is the exposure of light on pixel i

Why Radiometric Calibration?

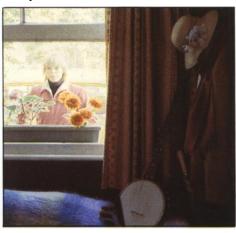
- Application 1: radiometric image analysis
 - Reflectance capture
 - Photometric stereo
 - Shape-from-shading
- Application 2: HDR (High Dynamic Range) imaging
 - To capture both dark and bright areas in an image

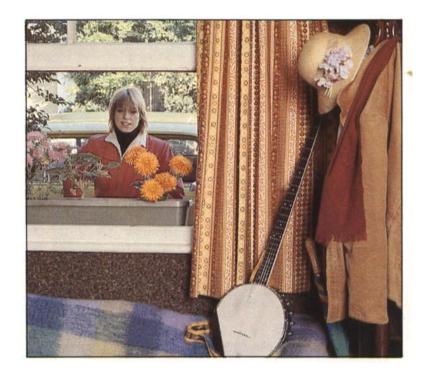
Conventional Tricks for HDR

Use fill-in flash lights to reduce contrast

Vue à travers une fenêtre

Les scènes comportant une vue extérieure prise dans un intérieur sont très difficiles à réaliser. Dans ce cas, la mesure pour la zone lumineuse de la fenêtre 1 (sur le schéma ci-dessous) donne un résultat acceptable,


dessous à droite) pas plus satisfaisante pour l'extérieur que pour l'intérieur. La solution adoptée consiste à éclairer l'intérieur avec un flash diffusé 4, pour faire venir des détails à l'intérieur tout en conservant une vue détaillée de l'extérieur. La distance du flash a été calculée comme indiqué ci-dessous.


Exposure for outside

Exposure for inside

Average exposure

Using fill-in flash

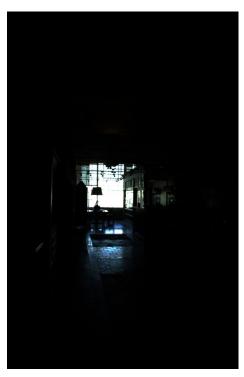
Conventional Tricks for HDR

Use neutral density filters to reduce contrast

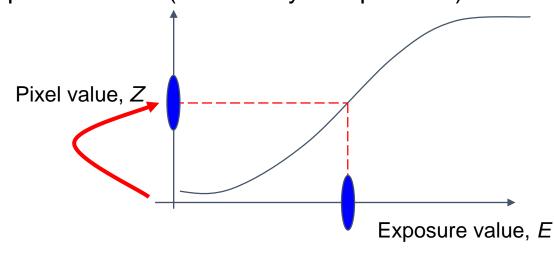
No filter: sky is too bright

Vertical neutral density gradient

Steps of HDR Imaging (& Radiometric Calibration)



• Step 1: Capture Images with different exposure (e.g. by varying the shutter speeds)

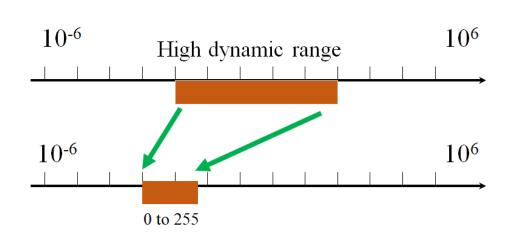

Assume scene is static, camera is static, and lighting is static, so all images are in register

Steps of HDR Imaging (& Radiometric Calibration)

Step 2: Recover the camera response curve and the HDR image

The response curve transfers a pixel value to an exposure value (essentially # of photons)

For each pixel in each image convert the pixel value (an integer within [0,255]) to scene exposure value



Average exposure values from different images to denoise

Steps of HDR Imaging (& Radiometric Calibration)

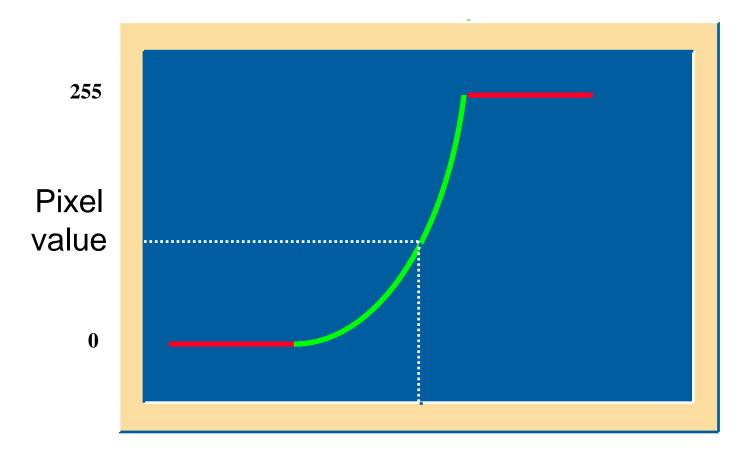
- Step 3: remap the exposure value back to integers within [0,255]
 - → Because displays and printers only support that format
 - → To reduce the dynamic range, but preserve all the details

How to Change Exposure

- Ways to change exposure
 - Shutter speed
 - Aperture
 - Natural density filters
- Exposure times usually obey a power series
 - each "stop" is a factor of 2
- Camera settings say:

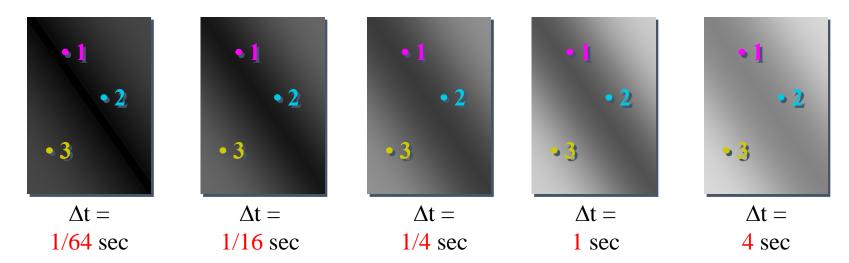
¼, 1/8, 1/15, 1/30, 1/60, 1/125, 1/250, 1/500, 1/1000 sec In reality is:

¼, 1/8, 1/16, 1/32, 1/64, 1/128, 1/256, 1/512, 1/1024 sec


Questions?

Camera Response Calibration

• The non-linear mapping between exposure and pixel values.

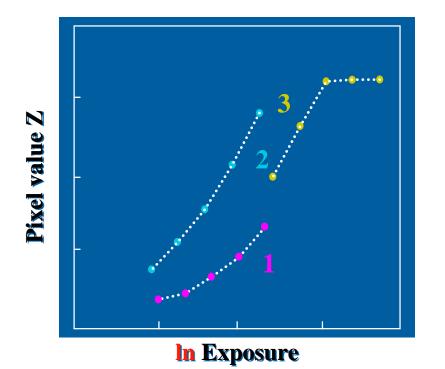


Exposure = (Irradiance * Δt) (CCD photon count)

The Algorithm

Input Images

Pixel Value Z = f (Exposure)

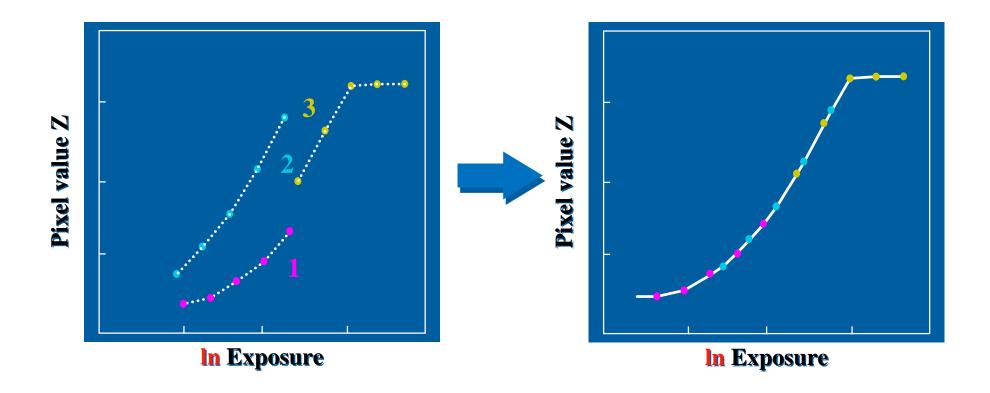

Exposure: irradiance $\cdot \Delta t = \#$ of photons (per pixel)

 $\log \text{Exposure} = \log \text{Irradiance} + \log \Delta t$

$$g(Z) = \log f^{-1}(Z) = \log Irradiance + \log \Delta t$$

The Algorithm

- Plot the observations from a single pixel
 - $g(Z) = \log Exposure = \log Irradiance + \log \Delta t$
- Obtain a log-curve in the "Pixel Value Exposure" space
- A different pixel generate a different curve


The horizontal offset of each curve is the unknown irradiance E_i at each pixel i

The Algorithm

 We can estimate the irradiance of all pixels to align these pieces to a smooth curve

The Math

For each pixel site i in each image j, want

$$ln E_i + ln \Delta t_j - g(Z_{ij}) = 0$$

- # of unknowns: N + 256 (N is the # of pixels)
 - g(Z) is determined by g(0), g(1), ... g(255)
- # of equations: NK (K is the # of images)
- Minimize the following

$$\sum_{i=1}^{N} \sum_{j=1}^{P} \left[\ln E_i + \ln \Delta t_j - g(Z_{ij}) \right]^2 + \lambda \sum_{z=Z_{min}}^{Z_{max}} \left[g(z) - \frac{g(z+1) + g(z-1)}{2} \right]^2$$
fitting term
smoothness term

• The solution can be only up to a scale, add a constraint

$$g(128) = 0$$

$$g''(z) = 0$$

How to Optimize?

$$\sum_{i=1}^{N} \sum_{j=1}^{P} \left[\ln E_i + \ln \Delta t_j - g(Z_{ij}) \right]^2 + \lambda \sum_{z=Z_{min}}^{Z_{max}} \left[g(z) - \frac{g(z+1) + g(z-1)}{2} \right]^2$$

1. Set partial derivatives to zero

derivatives to zero
$$\min \sum_{i=1}^{N} (\mathbf{a_i x} - \mathbf{b_i})^2 \rightarrow \text{linear equations of} \begin{vmatrix} \mathbf{a_1} \\ \mathbf{a_2} \\ \vdots \end{vmatrix} \mathbf{x} = \begin{vmatrix} \mathbf{b_1} \\ \mathbf{b_2} \\ \vdots \\ \mathbf{b} \end{vmatrix}$$

2. Solve the linear equation (over-determined, i.e. more equations than unknowns)

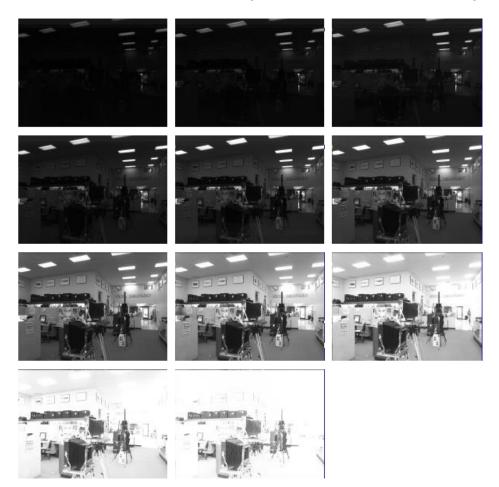
$$\mathbf{A}\mathbf{x} = \mathbf{b} \longrightarrow \mathbf{A}^T \mathbf{A}\mathbf{x} = \mathbf{A}^T \mathbf{b}$$

$$\underset{m > n}{m \times n}$$

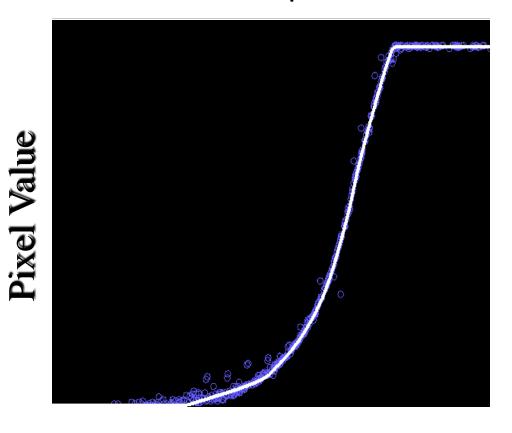
Matlab code


```
% gsolve.m - Solve for imaging system response function
% Given a set of pixel values observed for several pixels in several
% images with different exposure times, this function returns the
% imaging system's response function g as well as the log film irradiance
% values for the observed pixels.
% Assumes:
 Zmin = 0
 Zmax = 255
 Arguments:
  Z(i, 1) is the pixel values of pixel location number i in image 1
         is the log delta t, or log shutter speed, for image j
         is lamdba, the constant that determines the amount of smoothness
  w(z) is the weighting function value for pixel value z
 Returns:
  g(z) is the log exposure corresponding to pixel value z
  lE(i) is the log film irradiance at pixel location i
```

Matlab code

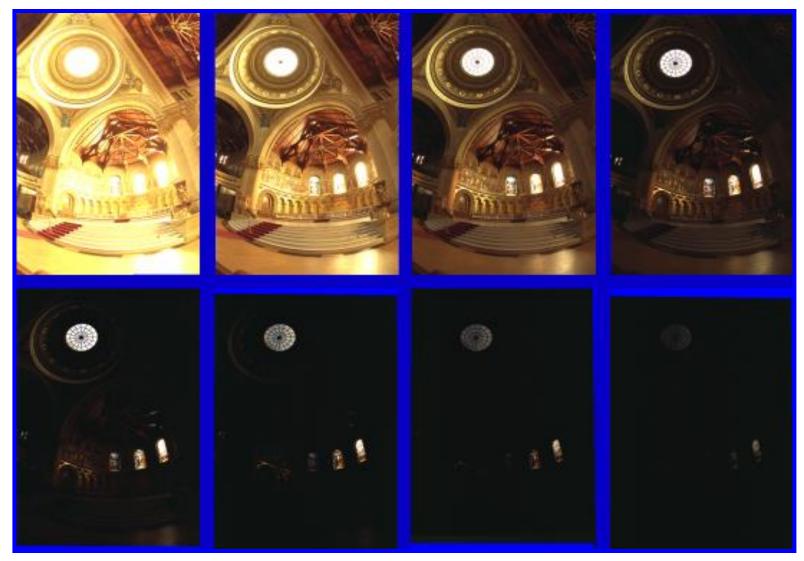



```
function [q,lE]=qsolve(Z,B,l,w)
n = 256;
A = zeros(size(Z,1)*size(Z,2)+n+1,n+size(Z,1));
b = zeros(size(A, 1), 1);
k = 1;
       %% Include the data-fitting equations
for i=1:size(Z,1)
  for j=1:size(Z,2)
    wij = w(Z(i,j)+1);
   A(k, Z(i, j) + 1) = wij; A(k, n+i) = -wij; b(k, 1) = wij * B(i, j);
   k=k+1;
  end
end
A(k, 129) = 1; %% Fix the curve by setting its middle value to 0
k=k+1;
for i=1:n-2 %% Include the smoothness equations
 A(k,i)=1*w(i+1); A(k,i+1)=-2*1*w(i+1); A(k,i+2)=1*w(i+1);
 k=k+1;
end
x = A \setminus b;
               %% Solve the system using SVD
q = x(1:n);
                                29
1E = x(n+1:size(x,1));
```


Results: Camera Response Function

Kodak DCS460 (1/30 to 30 sec)

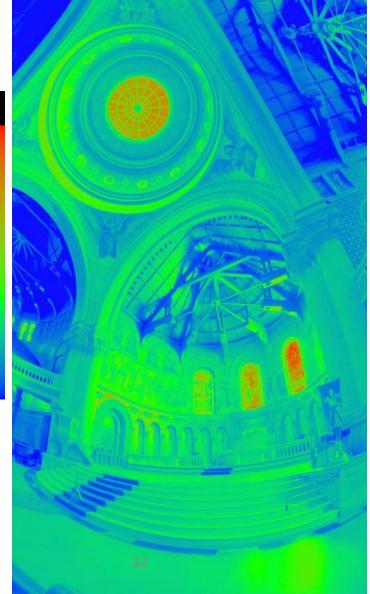
Recovered response curve



log Exposure

30

Example: Input Images



Example: Recovered Radiance Map

W/sr/m2 121.741 28.869 6.846 1.623 0.384 0.091 0.021 0.005

Irradiance map, sometimes also called radiance map

. . .

Ignoring the vignetting effect, irradiance is proportional to the scene radiance

Questions?

